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Growth patterns of microscopic brain tumors
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Highly malignant brain tumors such as glioblastoma multiforme form complex growth patternsin vitro in
which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of
growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to
follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic
instability in the model, which leads to branch formation. We also give a discrete description for the expansion
of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both strong
heterotype chemotaxis and strong homotype chemoattraction are required for branch formation within the
invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to
explore and analyze transitions between different growth regimes.
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I. INTRODUCTION

In certain three-dimensional tissue culture settings, hig
malignant human brain tumors can form a remarka
growth pattern, consisting of central proliferation and inv
sive spread into the periphery@1#. In the brain itself, these
tumors may grow in a similar way. In the initial stages, t
tumor supposedly grows more or less symmetrically u
~presumably! mechanical confinement pressure increases
critical level, and an invasive phase is triggered. In this ph
the central multicellular tumor spheroid~MTS! continues to
grow, but also there is rapid invasion of surrounding tiss
by mobile tumor cells, which are continually shed by t
MTS at several stages. In these stages, chains of single
can branch and extend around the core in an invasive zon
is this rapid and extensive invasion of brain parenchyma
rounding the main macroscopic tumor, which makes this
rible disease so difficult to treat@2#. This paper will introduce
a model that has some of the salient features of this proc

Some of the features of the growth and invasion ha
been revealed byin vitro experiments in transparent extrace
lular matrix gel @1#, see Fig. 1. The branching pattern su
rounding the central core is the invasive zone which gro
with a maximum velocity of about 4.5mm/h and in turn
corresponds well with values obtained fromin vivo experi-
ments @3#. Our interest here is to try to understand t
mechanism for the formation of the branching structures

It seems clear that we are dealing here with a grow
instability. In fact, there is considerable qualitative rese
blance between the pattern of Fig. 1 and the well-kno
diffusion-limited aggregation~DLA ! pattern@4# or biological
patterns such as those encountered in nutrient-limited gro
of bacteria colonies@5#. Modeling of a similar kind has bee
used for cancers other than brain tumors@6#. In these bio-
logical cases, the basic pattern is determined by enhan
proliferation of tumor cells at well-nourished tips of th
branches. This leads to unstable growth of the branches
1063-651X/2002/66~5!/051901~7!/$20.00 66 0519
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actly as in the classic Mullins-Sekerka instability of meta
lurgy @7#.

However, the biology of brain tumors is different from
that of bacteria colonies in the important respect that
invasive cells are thought to exhibit very little proliferativ
activity @8,9#. This means, that all~or most! of the new cells
are produced at the surface of the MTS, and then invade
surrounding tissue. Secondary tumors may form at dis
sites~compare also with Deisboecket al.! @1#, yet the branch
formation in Fig. 1 is supplied from the MTS core, or mo
accurately from its highly proliferative cell surface laye
~see also following section!. The invasive cells are thought t
move in response to the various chemical and material
dients in the tissue, and we assume that there is a sim
mechanism for thein vitro assay described in Sec. II A. Tha
is, their motion is governed by chemotaxis and haptota
though, in what follows, we will neglect haptotaxis.

In our model, we will assume that the growth of the i
vasive branches is governed by two major processes:

~i! Chemotaxiscaused by the gradient of~heterotype! nu-

FIG. 1. Two microscopic images of human U87MGDEGFR
multicellular tumor spheroids~MTS! at t5120 h ~after placement
into the 3D ECM gel, using the same gel composition in both
periments!. The radius of the MTS~the dark region in the center! is
about 0.4 mm.~a! shows chainlike invasion patterns, whereas t
MTS system in~b! displays a more disclike invasive pattern. Inv
sion in both MTS experiments is predominantly 2D because of
design of the sandwich assay as described in detail by Deisb
et al. @1#.
©2002 The American Physical Society01-1
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trient concentration. In the experiment, a~nonreplenished!
nutrient medium is mixed with the biogel, and it is consum
by the growing tumor~see the following section for details!.
This, however, would merely lead to an expanding cloud
mobile cells.

~ii ! Homotype attractionis another form of chemotaxi
where cells secrete a soluble agent~paracrine production!
which attracts other cells. There also may be tissue dam
by the invading cells, which gives rise to pathways that ot
cells can follow more easily.

In the following section, we give more details about t
biological background of the experiments and concepts.
show, for a simplified continuum model, that we can g
branch formation from a combination of heterotype and
motype attraction~both are necessary!. We then introduce a
hybrid discrete-continuum model for the tumor expansi
Our simulation results show that there are regimes of bra
formation depending on the strength of various effects,
these are, in some measure, found in the experiment. Fin
we summarize our results and point out directions for fut
modeling efforts.

II. EXPERIMENTAL BACKGROUND

A. Experimental results

We have developed an experimental model which u
MTS @10# implanted into a three-dimensional~3D! extracel-
lular matrix ~ECM! gel. This sandwich MTS assay is de
scribed in detail in Deisboecket al. @1#. In brief, we placed
human U87MGDEGFR @11# multicellular glioma spheroids
(B5500– 700mm; 0.7 – 1.03104 cells) in between two
layers of growth factor reduced~GFR! matrix, Matrigel®
~BIOCAT®, Becton Dickinson, Franklin Lakes, NJ! which
forms a reconstituted basement membrane at room temp
ture. It has been shown that such basement membranes
distinct network structure@12#. This specific GFR-matrix
variant contains less growth factor@e.g., epidermal growth
factor, platelet-derived growth factor, transforming grow
factor-b ~TGF-b!# as compared to the full Matrigel, howeve
a similar amount of the ECM proteins laminin~61%!, col-
lagen IV ~30%!, and entactin~7%!. We then mixed this ge
with ~serum-free! OPTI-MEM® to a ratio of 3:1 GFR matrix
to medium, reaching a total volume of 200ml @per well;
using a 48-well flat bottom tissue culture treated Multiwell
plate ~FALCON®, Fisher Scientific, Pittsburgh, PA!#.

As reported previously in Deisboecket al. @1#, over 144
h, the volumetric growth followed decelerating kineti
reaching on average 0.403 mm3. During the same period
invasion increased significantly up to 1.705 mm2 at the end
of the observation period. The experimental model a
showed a steep increase in invasive edge cell velocity re
ing a peak of 109mm/day att596 h. Specific immunohis-
tochemistry staining revealed an inverse relationship
tween MTS size and proliferative index. Also, th
proliferative cells tended to be more densely arranged in
surface layers of the MTS, whereas in the center of the la
MTS cells were less dense with separate lucid areas
apoptotic nuclei.
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Figure 1 depicts two microscopic sample images fro
tumor spheroids at 120 h@after placement into the 3D ECM
gel ~using the same gel composition in both experiment!#.
Figure 1~a! shows ‘‘chainlike’’ invasion patterns, whereas th
MTS system in Fig. 1~b! displays a more ‘‘disclike’’ invasive
pattern. Invasion in both MTS experiments is predominan
2D because of the design of the experiment@1#. At this point
of time, the average MTS volume was 0.356 mm3 and the
average MTS invasion area was 1.394 mm2.

B. Modeling background

As described in detail in Deisboecket al. @1#, using the
methods of the preceding section, we were able to study
evolving tumor with its key features of proliferation and in
vasion for up to 6–8 days without replenishing the nutrie
supply. Volumetric growth follows Gompertz-like dynamic
@13#. Tumor growth and invasion were closely related and
fact showed evidence of feedback@1# ~which we do not treat
in this paper!. We can see in Fig. 1 that invasive tumor ce
often seemed to follow one another forming a chain, pre
ously only shown for neural precursor cells@14#. We take
this as an evidence for homotype attraction of cells for o
another. The biological correlate for the attractant~s! is the
paracrine production of soluble protein growth factors, e
TGF-a and hepatocyte growth factor/scatter factor~HGF/SF!
by tumor cells @15–17#. Mobile cells would follow each
other because of increasing paracrine attraction. There is
the possibility of smaller mechanical resistance in a p
formed channel. Such a mechanism would lead to a cont
ous imprinting of~initially random! invasive pathways.

III. FORMULATION OF THE MODEL

A. Continuum modeling

The major features that we want to include in our descr
tion of the mobile tumor cells are the following: cells a
shed from the MTS and, in the absence of other forces,
dergorandom motion, i.e., diffusion. In continuum terms, th
cells obey a diffusion equation with a diffusion coefficie
Dc . In addition, there ischemotaxis, i.e., directed active mo-
tion along chemical gradients. These effects are describe
the usual Keller-Segel equation@18#

]c/]t5“@Dc~r !“c#2“@c“x~n,r !n#2“@ch“h#.
~3.1!

Here c is the concentration of mobile cells, andn is the
concentration of nutrient which guides the motion of t
cells. For the chemotaxis coefficientx, we use the recepto
law x5b(r )no

2/(no1n)2. The characteristic concentratio
no will be discussed subsequently. Here,b gives the scale of
the chemotaxis, i.e., thedrift velocity, which a cell acquires
in unit gradient of nutrient. This drift velocity accounts for
roughly linear growth law of the invasive zone. The last te
is the homotype attraction mediated by a factor whose c
centration ish, and whose chemotaxis coefficient~taken to
be constant for simplicity! is h.

In our discrete simulation, below, we will allow bothDc
andb to depend on the position. This is to take into accou
1-2
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GROWTH PATTERNS OF MICROSCOPIC BRAIN TUMORS PHYSICAL REVIEW E66, 051901 ~2002!
the effect of tissue damage; we simply make it easier fo
cell to move where the other cells have previously been
multiplying b and Dc by a dimensionless factorg1 which
will be a parameter. This is a very crude representation
these effects, but it will allow us to show, in a fairly simp
way, how branch formation occurs in a discrete model.

The boundary condition onc at the surface of the MTS
corresponds to generation of cells as they are shed. As
scribed above, we do not consider proliferation of cells in
invasive zone, based on experimental evidence@8,9#. In this
respect, our approach differs sharply from that of Burg
et al. @19# who, instead, write an equation of the form

]c/]t5“@Dc“c#1gc~co2c! ~3.2!

with logistic growth throughout the invasive zone, and no
chemotaxis. This equation is of the form of a Fish
Kolmogorov@20# equation, and has traveling front solution
with a fixed velocity

n52ADcgco ~3.3!

due to the exponential growth ofc. The authors use this
equation to compute the diffusion coefficient.

However, our point of view is quite different. If we adop
an equation of the form of Eq.~3.2!, we would have to put
the growth term only on the surface of the MTS. We can
the difficulty with this if we idealize the MTS as a poin
source of new cells, and write

]c/]t5“@Dc“c#1Gd~r !. ~3.4!

This equation is not difficult to solve. We get

c~r ,t !}E
0

1

t21/2e2r 2/4Dtdt'~At2rAp/4D¯ !, ~3.5!

where we have written the limit for smallr. That is, as in any
diffusion problem, contours of constantc move according to
r;t1/2, not with fixed velocity. In order to get a fixed veloc
ity, we need a chemotaxis~drift! term such as the secon
term in Eq.~3.1!.

We also need an equation for the nutrient concentration.
In the experiments that we have in mind there are sev
constituents of the nutrient used, but, for simplicity, we w
think about a single species such as glucose. Thus we
simple diffusion with a large diffusion constantDn and con-
sumption of the nutrient by the mobile cells and also
those belonging to the MTS.

]n/]t5Dn¹2n2a~n!c, ~3.6!

where the last term corresponds to the consumption of n
ent by the cells anda(n) is a function giving the overal
scale of nutrient consumption. The experiments with cultu
brain cancer cells@21# show thata(n) is well represented by

a~n!5H aon/n1 , n<n1

ao , n.n1
, ~3.7!
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where n1 is a characteristic saturation concentration. It
reasonable thatn1'no , and we will make this assumption

For the MTS, we assume the consumption is large, gi
the large number of highly proliferative cells in the surfa
layers. In order to avoid complications, we setn50 on the
surface of the MTS. Far from the tumor, we have a bound
conditionn5n` , wheren` is the nutrient concentration in
troduced at the beginning of the experiment, or, in the bra
the general supply.

Finally, we need an equation for the homotype factorh.
We use a diffusion equation again, and suppose that
factor is produced by the mobile cells at a ratel. In order to
avoid a large buildup of this factor, we assume that it dec
at a ratem. Thus, we have

]h/]t5Dh¹2h2mh1lc, ~3.8!

whereDh is the corresponding diffusion coefficient. As w
will see, in order to form branches,Dh needs to be smalle
thanDc .

B. Estimate of the parameters

In order to proceed with a solution of the equations abo
we need to know a number of parameters. In this section,
will try to use experimental numbers insofar as possible a
we will quote a number of quantities. These should be
garded as order-of-magnitude estimates for the specific
periment, which we are trying to explain, and still more
for the situationin vivo where many other effects such a
inhomogeneity of the environment can play an importa
role. The point of the enterprise is to see whether the par
eters we use in the simulation are reasonable.

We turn first to Eq.~3.6!. The diffusion coefficient of
glucose in the brain is known to beDn56.731027 cm2/s
@22#. The saturation consumption has been measureda
51.6 pg/cell/min @21#. Also, n150.2 g/l. Note that this is
within a factor of 3 ofn`50.6 g/l for the experiment@1#.

We should note that for our purposes, Eq.~3.6! may be
simplified because the time scale for the diffusion of t
nutrient ismuchfaster than that of the cells, thus we may s
]n/]t50, and write the equation in the following form~for
n.no):

a2¹2~n/n`!5@aoa2/Dnn`V#~Vc!. ~3.9!

Here we have measuredc in terms of the cell volumeV, n in
terms ofn` , and multiplied by the square of a length scalea
~a typical cell diameter!, which we take to be 10mm. The
dimensionless group in brackets,g25aoa2/Dnn`V, turns
out to be of order 0.1. It is a parameter that we need for
simulations.

For Eq.~3.1!, we needDc the diffusion constant of brain
tumor cells in the tissue. The only direct measurement t
we know of, by Burgess et al. @19#, gives 1.7
31029 cm2/s. However, this value depends on interpreti
data according to Eq.~3.2!. We have explained above wh
we cannot accept this value from a tumor biology standpo
Our point of view is that the velocity of the edge of th
1-3
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invasive zone,n, depends primarily on chemotaxis, and
independent of the random motion of the cells.

We have been unable to find a direct measurement of
random diffusion of single invasive cells, so we are reduc
to very crude estimates. We may state the problem as th
finding the ‘‘jump time’’ t, i.e., the time required for a cell to
move its own length in a random walk,t5a2/Dc . For ex-
ample, in the experiment of Chicoine and Silbergeld@3#, a
cell in a petri dish takes several hours to perform suc
motion, and we may expect that in the brain, or within t
gel medium of our experiment, the time will be longer. As
complete guess, we suppose this time to be of order 1
This amounts to guessing thatDc;10212 cm2/s. We are
aware of the weakness of this chain of reasoning.

For the chemotaxis term, we have a measurement@3# of
the maximum drift velocity of mobile cells:n54.8mm/h
~which corresponds very well to the 4.5mm/h, measured
after 96 h in our 3D MTS assay@1#!. Equation~3.1! gives the
drift velocity as

n5
1

16
bn`“@n/n`#. ~3.10!

Here the factor 1/16 comes from the receptor law. We m
estimate the gradient in which the cells move by assum
that the nutrient recovers its full concentration in appro
mately the diameter of the MTS, about 1 mm. Thusbn`

'231027 cm2/s. We note that this has the units of a diff
sion constant, so we define our third dimensionless par
eterg35bn` /Dc'100.

Much less is known about the dynamics of the homoty
factor. We note that if asteady stateis attained in Eq.~3.8!,
the ratio of the concentration of homotype factorho to cancer
cells co is ho /co5l/m5g4 , another dimensionless param
eter. It will be convenient to measure the decay ratem in
terms of the jump time, and setg55Dcm/a25mt. We can
parametrize the strength of the chemotaxis induced byh by
noting that g65hho /Dc is a dimensionless group whic
gives the relative importance of the first and last terms on
right-hand side of Eq.~1!. Finally, we need to know the ratio
of diffusion coefficients, i.e.,g75Dh /Dc . These three pa
rameters are not known, even in order of magnitude. T
same is true ofg1 which characterizes the homotype attra
tion in another way. In fact, understanding the role of the
parameters is the point of our enterprise here. We will
tempt to deduce them from the pattern itself.

It is disturbing that we have seven parameters in t
problem. However, we have been able to estimate two
them, and, as we will see, the general nature of the patter
not terribly sensitive to the others. Also, we suggest t
future experiments could be oriented to finding out mo
about the homotype factor.

IV. STABILITY ANALYSIS

In order to see whether chains of cells~forming the
branches in Fig. 1! are likely to be formed in our model, w
start with a simplified two-dimensional continuum approa
Suppose we consider a channel~a part of the invasive zone!
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with cells supplied at concentrationco at one end. Cells drift
in the x direction, with drift velocityu, because of a fixed
gradient of nutrient. The channel has a finite widthL in they
direction, and we use periodic boundary conditions. Acco
ing to Eq. ~3.8!, there will be a steady state with a fixe
concentration,ho5g4co , of homotype factor. The questio
we pose is whether this uniform steady state is stable. It tu
out not to be, and the growth of the instability shows ho
branches start to form.

In our stability analysis, we write

c5co~11C!, h5ho~11H !, ~4.1!

whereC, H, are small deviations from the steady state. W
then rewrite linearized forms of Eqs.~3.1!, ~3.8! in terms of
these variables. Further, we setr5ar, using the cell diam-
eter a to rescale spatial variables, andt5(a2/Dc)T is the
scaling time by the jump time. We find

]C/]T5¹r
2C2~au/Dc!"“rC2g6¹r

2H, ~4.2!

]H/]T5g7¹r
2H2g5~C2H !. ~4.3!

In order to fix our ideas, we will take a model set of para
eters as follows:g550.05, corresponding to slow decay o
the homotype agent, andg655, i.e., moderately strong
chemotaxis from the homotype agent. The ratio of diffusi
coefficientsg7 needs to be less than unity for a strong attra
tion to occur, so we take it to be 0.1. Finally, we can estim
the termau/Dc , from the preceding section to be of order

These are linear equations, and we seek a solution of
form

C,H;exp~vT2 iQ"r!. ~4.4!

Here the ~dimensionless! growth rate of the instabilityv
plays the role of an eigenvalue, and the wave vectorQ ~in
units of I /a) controls the spatial variation. The dispersio
relation v~Q! gives the growth of instabilities for variou
wavelengths; positivev corresponds to unstable behavior.
Fig. 2, we plot the dispersion relation forQ in thex direction
and they direction for the parameters quoted above. T
same general behavior is true over a large range in param
space, namely instability at long wavelength~small Q!, and
stability at short wavelength.

We should note that the instability in they direction, i.e.,
across the channel, is stronger than that in thex direction. In
effect, the instability is advected by the drift velocityu. In
order to see the effect on an initial perturbation, we supp
that there is a small deviation from a uniform distribution
cells, and then propagate it forward in time using Eqs.~4.2!,
~4.3!. The equations can be solved exactly using Fou
transforms, and this is what we did. The result is shown
Fig. 3. The initial cell cluster, on the left, is carried forwa
by the drift and increases in size by robbing material fro
the rest of the channel. This is incipient branch formati
due to the combination of heterotype and homotype che
taxis. Note thatboth are necessary to form this structure.
1-4
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V. DISCRETE SIMULATION MODEL

A. Formulation

In the preceding section, we showed a linear analysis
the formation of a branch in the invasive zone. Here we w
take a complementary approach and do a discrete simula
In this case we represent the homotype factor by an extr
approximation: we assume it does not diffuse at all, so t
each cell leaves a ‘‘trail’’ which other cells follow. Alter
nately, we could interpret the model as representing the c
where each cell carves a ‘‘least resistance’’ pathway for o
ers to follow.

We work on a 1283128 square lattice, with the lattic
constant equal to the cell diametera. We treat the nutrient
concentration as a continuous variable and the tumor cel
discrete. For the nutrient we solve Eq.~3.6! numerically on
the lattice. If we writeN5n/n` , then Eq.~3.6! becomes

FIG. 2. Dispersion relation for cells in a channel showing t
stable and unstable modes for wave vectorQ, in units 1/a, in thex
and y directions. We show the growth rate~in the dimensionless
units in the text! as a function ofQ.

FIG. 3. Growth instability within a channel. The initial cell clus
ter on the left grows into the incipient branch on the right. The a
are in units ofa.
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D2N5g2C f~N!, ~5.1!

where f (N)5N, N,1/3, f 51, otherwise@cf. Eq. ~3.7!# D2
is a second numerical difference, andC is 1 or 0 depending
on whether a cell occupies that lattice site. Equation~5.1! is
standard; it is a discrete version of the Helmholtz equati
We have solved it using the strongly implicit scheme.

For the cells, we represent the various processes by a
of jump probabilities. Our basic rate is the random walk ra
for cells ~cf. the preceding section!. Each cell can jump to
any empty adjacent site with ratew(0)51, unless it is either
in a gradient ofN, or if it undergoes homotype attraction. I
the former case, we put

w~N!5g3~3N11!22DN, ~5.2!

if DN, the numerical gradient ofN in that direction, is posi-
tive. The second factor comes from the receptor law. For
homotype attraction, we keep track of the places where
cell has previously been. If that site has been visited
multiply each jump rate byg1 . As the simulation proceed
we pick processes according to their relative jump rat
Showing that this discrete process reduces to Eq.~3.1! when
viewed on large space and time scales is a standard exe
in stochastic analysis@23#. For the MTS we take a disk o
immobile cells and start with about 100 mobile cells arou
it. In order to speed up the subsequent calculations, we
a somewhat irregular initial distribution of these cells. In t
course of the growth, we allow any empty site near the i
mobile cells to either shed a new mobile cell, or to grow t
MTS, with a certain relative probability. Our intention is t
use this parameter to match the known growth history of
MTS, but we have not yet done this systematically.

B. Results

We show the results of simulation in three regimes
Figs. 4 and 5. In all cases we started with a tumor core o
radius of 20 cells, and liberated 100 cells to start invasi
We have takeng2 , the parameter that characterizes co
sumption of nutrient as 0.3, in the range we estimated abo
The three images are representative of three regimes fo
other two parameters. It will be important in future work
map out the various parameter regimes in more detail
see to what extent we can understand the underlying
cesses. The general scale of the figures can be thought
being about 1 mm, as in the experiment. In Fig. 4~a!, we
have basically turned off both the chemotaxis and the hom
type attraction:g155, g355. In this case, we have a typica
result of diffusion: random walks are compact in two dime
sions, and the cloud of cells near the MTS does not repre
the invasive pattern of Fig. 1. We conclude that it tak
strong chemotaxis~or some equivalent phenomenon! to gen-
erate an invasive zone.

In Fig. 4~b!, we thus implemented strong chemotaxis,g3
5100, in the regime that we estimated above. We also t
g1525, i.e., rather strong homotype attraction. In this patt
@Fig. 4~b!#, we see a dispersed zone of invading cells,
only a hint of chain formation. However, this sort of patte
is observed in the experiment@cf. Fig. 1~b!#. It will be im-

s

1-5



lks are
ng
observed

L. M. SANDER AND T. S. DEISBOECK PHYSICAL REVIEW E66, 051901 ~2002!
FIG. 4. Simulation results. For panel~a! both chemotaxis and homotype attraction have been turned off. The resulting random wa
compact in two dimensions, however not representing the biological patterns. Panel~b! is the result of both strong chemotaxis and stro
homotype attraction. The dispersed zone of invading cells with only a hint of chain formation resembles the experimental patterns
in Fig. 1~b!. The general scale of the figures can be thought of as being approximately 1 mm.
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portant to revisit the experiment in a systematic manne
try to understand how this pattern evolves.

We find that in order to produce well-defined chain stru
tures, in Fig. 5@cf. Fig. 1~a!#, we need to introducevery
strong homotype attraction (g15250) and alsovery strong
heterotype chemotaxis, perhaps a factor of 10 larger than
estimated above. This might indicate that the chemical t
gers other than only glucose might be involved. With rega
to thein vitro assay there are numerous candidate substa
in the tissue culture medium as well as in the gel, and m
more soluble factors are likely to have an impact in the r
brain parenchyma. We are encouraged, however, by the
that the model can produce chains without putting in an

FIG. 5. Simulation results. Very strong homotype attraction a
very strong chemotaxis result in relatively well-defined chainl
structures as seen in Fig. 1~a!. ~The general scale can again b
thought of as being approximately 1 mm.!
05190
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ct
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tificial device which does not correspond to the biology th
we understand.

VI. SUMMARY

This preliminary study introduces a computational mod
that attempts to clarify the pattern of highly malignant tum
growth, in particular, the origin and structure of the invasi
zone. We have attempted to remain grounded in the biol
of the tumor, yet we have, even in this preliminary stud
already revealed a number of interesting features.

The nature of the pattern formation here is quite differe
from that assumed by other authors for related systems s
as bacteria colonies@5#. In that case the biology is different
in that bacteria reproduce while in motion. Thus the diffusi
instability that gives rise to the branching shapes in bact
colonies, which are very well represented by DLA. Our ca
is different despite the visual resemblance of the patte
and the pattern formation is considerably more subtle.
such, this has model is interesting for statistical phys
quite apart from the application we have in mind. We sho
note, however, that our discrete simulation method is sim
to that of Ben-Jacob, Cohen, and Levine@5#, and the diffu-
sive instability is present here as it is in the bacteria colon
tumor cells that are far in advance of the rest of the tum
system consume nutrient, and tend to get even farther ah

Our results persuade us that chemotaxis is a driving fo
in forming the invasive zone, and this prediction can
tested. We propose that the invasive zone would slow
expansion considerably in situations where the main tum
mass is very well nourished. The other ingredient in o
model, the homotype attraction, is treated in a very sc
matic way here. In this form, it does give the qualitati
effect that we are looking for, but the details of the proce
will need considerable work both in modeling and in und
standing the underlying biological processes.

We are aware that several important features are not
included in the model. For example, we have made no m

d
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tion of haptotaxis. Haptotaxis refers to enhanced movem
on a solid permissive substrate, e.g., the laminin and colla
fibers present within the matrigel used in here, and certa
in vivo. It is noteworthy that glioma tumor cells also produ
extracellular matrix proteins such as laminin@24,25#, thus
further imprinting the pathway structure with increased p
mission on paracrine secreted solid substrates. As such,
from chemotaxis, haptotaxis also contributes to the obser
branching patterns and thus needs to be considered for fu
work.

We have also completely neglected effects arising fr
the elasticity of the tissue surrounding the growing tumor
growing core certainly strains the material and this may
fect the migrating cells, though the effect is not trivial sin
it can be shown that an expanding sphere in an elastic
dium gives rise to a pure shear, i.e., local volumes are
changed, but rather deformed. We suspect that the impo
elastic effects are nonlinear ones—this is quite likely in
gel, and presumably also in brain tissue. Aside from p
expansion, the mechanical effects of cell traction, i.e., t
sion, especially in the ECM gel used in the experimen
assay, are likely also need to be considered and our
preliminary experimental findings already support this n
tion. Another effect which should be thought about in th
context is the possibility of a kind of a local fracture from th
mobile cells enhancing the damage to the tissue and favo
chain formation. In brain parenchyma, such microfractu
may also lead to a decrease in the tissue consistency,
reduce the mechanical confinement surrounding the main
mor mass. That would allow the tumor to continue its vo
A
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nd
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M
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nd

F.

05190
nt
en
ly

-
ide
ed
re

f-

e-
ot
nt

e
-
l
n

-

ng
s
us
u-
-

metric growth, which in turn would shed~in total! even more
invasive cells. Interestingly, such a feedback pattern has
deed been observedin vitro, represented by the damped o
cillations of the dynamic ratio between volumetric growth
the MTS and the invasive front@1#.

In future work we intend to first map out in detail th
parameter space for thisn model, and to attempt to put in th
observed growth profile of the MTS. We will then also stu
the effects of inhomogeneity of the 3D matrix, which shou
facilitate spatial expansion into directions of least resistan
More specifically, we plan to map out the response of
formation of the invasive zone to easier paths of mot
~including haptotaxis!. This effort will also help us determine
more carefully the diffusion coefficient of brain tumor cel
in such 3D heterogeneous biological media.

A better understanding of the processes governing the
set and the dynamics of multicellular tumor invasion wou
be of great significance for tumor biology research and
important step towards the development of novel diagno
tools and innovative treatment approaches in the future.
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